TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 11, November 2006, Pages 4959–4980 S 0002-9947(06)03876-1 Article electronically published on April 11, 2006

OPEN LOCI OF GRADED MODULES

CHRISTEL ROTTHAUS AND LIANA M. SEGA

ABSTRACT. Let $A=\bigoplus_{i\in\mathbb{N}}A_i$ be an excellent homogeneous Noetherian graded ring and let $M=\bigoplus_{n\in\mathbb{Z}}M_n$ be a finitely generated graded A-module. We consider M as a module over A_0 and show that the (S_k) -loci of M are open in $\operatorname{Spec}(A_0)$. In particular, the Cohen-Macaulay locus $U_{CM}^0=\{\mathfrak{p}\in\operatorname{Spec}(A_0)\mid M_{\mathfrak{p}} \text{ is Cohen-Macaulay}\}$ is an open subset of $\operatorname{Spec}(A_0)$. We also show that the (S_k) -loci on the homogeneous parts M_n of M are eventually stable. As an application we obtain that for a finitely generated Cohen-Macaulay module M over an excellent ring A and for an ideal $I\subseteq A$ which is not contained in any minimal prime of M, the (S_k) -loci for the modules M/I^nM are eventually stable.

Introduction

A well-known theorem of Grothendieck states that if M is a finitely generated module over an excellent Noetherian ring A, then for all $k \in \mathbb{N}$ the (S_k) -locus of M

$$U_{S_k}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \text{ satisfies } (S_k) \}$$

is an open subset of $\operatorname{Spec}(A)$. As usual, (S_k) denotes the Serre condition, that is, $M_{\mathfrak{p}}$ satisfies (S_k) if for all $\mathfrak{q} \in \operatorname{Spec}(A)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ it holds that

$$\operatorname{depth}_{A_{\mathfrak{q}}}(M_{\mathfrak{q}}) \ge \min(k, \dim(M_{\mathfrak{q}})).$$

It also follows that for such modules M the Cohen-Macaulay locus

$$U_{CM}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \text{ is Cohen-Macaulay} \}$$

is an open subset of Spec(A).

Let $A = \bigoplus_{n \geq 0} A_n$ be a Noetherian graded excellent homogeneous ring and $M = \bigoplus_{i \in \mathbb{Z}} M_i$ a finitely generated graded A-module. Considered as a module over the base ring A_0 , M is a direct sum of finitely generated A_0 -modules. Moreover, if the base ring A_0 is local, the standard notion of depth is meaningful for the A_0 -module M and we may consider its (S_k) -loci

$$U_{S_k}^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid M_{\mathfrak{p}} \text{ satisfies } S_k \},$$

where $M_{\mathfrak{p}}$ denotes the localization of M at the multiplicative set $A_0 \setminus \mathfrak{p}$. In this paper we prove that under these assumptions the (S_k) -loci of the A_0 -module M are open subsets of $\operatorname{Spec}(A_0)$. In particular, the Cohen-Macaulay locus of M (as

Received by the editors March 23, 2004 and, in revised form, September 28, 2004. 2000 Mathematics Subject Classification. Primary 13A02, 13C15, 13F40; Secondary 13A30, 13C14.

an A_0 -module)

$$U_{CM}^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid M_{\mathfrak{p}} \text{ is Cohen-Macaulay} \}$$

is an open subset of $\operatorname{Spec}(A_0)$.

The proof follows the main ideas of Grothendieck's proof. It is, however, not merely a copy of the proof in EGA and requires a number of modifications. For the benefit of the reader we have included complete proofs of the results. Our proof is based on the following two observations: First, if A is a polynomial ring over the base ring A_0 , then every graded resolution of M by finitely generated graded free A-modules provides a free resolution of the A_0 -module M which is finitely generated on the homogeneous parts. The second is a result by Hochster and Roberts which states for the A-module M that there is an element $a \in A_0 \setminus (0)$ so that M_a is a free $(A_0)_a$ -module provided that the ring A_0 is a domain.

The paper is organized as follows:

The first section contains basic facts about graded rings and modules which are relevant for the rest of the paper. As a main result we obtain that the Auslander-Buchsbaum formula holds for the A_0 -module M.

The second section shows that the codepth-loci of M are open in $\operatorname{Spec}(A_0)$. This is the main step in proving the openness of the (S_k) -loci which we present in the next section.

In Section 4 we consider the homogeneous parts of the graded module M. We show that the codepth-loci and (S_k) -loci of the homogeneous parts of M are eventually stable. This is applied in the last section to the case of a finitely generated module M over an excellent Noetherian ring A. If $I \subseteq A$ is an ideal we recover a well-known result by Kodiyalam [7], namely that for $k \geq k_0$

$$depth(M/I^kM) = depth(M/I^{k_0}M).$$

We also show that if M is a Cohen-Macaulay module over A and if $I \subseteq A$ is not contained in a minimal prime of M, then the codepth- and (S_k) -loci of M/I^nM are eventually stable.

1. Basic facts

In this paper we assume that $A=\bigoplus_{i\in\mathbb{N}}A_i$ is a Noetherian homogeneous graded ring and that $M=\bigoplus_{i\in\mathbb{Z}}M_i$ is a finitely generated A-module. As usual, we let A_+ denote the irrelevant ideal of A, that is, $A_+=\bigoplus_{i>1}A_i$.

If $\mathfrak{p} \in \operatorname{Spec}(A_0)$ is a prime ideal of A_0 , then $M_{\mathfrak{p}}$ denotes the localization $S^{-1}M$ where $S = A_0 \setminus \mathfrak{p}$. Note that $M_{\mathfrak{p}}$ is a graded module over the graded ring $A_{\mathfrak{p}}$.

Our goal is to show that if A is excellent, then the codepth-loci and the (S_k) -loci of M, considered as a module over the base ring A_0 , are open subsets of Spec (A_0) .

- 1.1. **General remarks.** We begin our investigation with some well-known facts about graded modules. Since these results are frequently used throughout the paper, we include them together with their (short) proofs in this introductory section.
- 1.1.1. **Lemma.** There exists an integer t so that $\operatorname{ann}_{A_0}(M_t) = \operatorname{ann}_{A_0}(M_k)$ for all $k \geq t$.

Proof. For all $k \in \mathbb{Z}$ set $J_k = \operatorname{ann}_{A_0}(M_k)$. Since A is homogeneous and M is a finitely generated A-module, there exists $t_0 \in \mathbb{Z}$ such that

$$A_1 M_k = M_{k+1}$$
 for all $k \ge t_0$.

We conclude $J_k \subseteq J_{k+1}$ for all $k \ge t_0$. Since A_0 is Noetherian, there then exists $t \ge t_0$ so that $J_k = J_t$ for all $k \ge t$.

- 1.1.2. **Lemma.** The following two functions are well defined and surjective:
 - (1) The function $\varphi \colon \operatorname{Supp}_A(M) \to \operatorname{Supp}_{A_0}(M)$ defined by $\varphi(P) = P \cap A_0$.
 - (2) The function $\psi \colon \operatorname{Ass}_A(M) \to \operatorname{Ass}_{A_0}(M)$ defined by $\psi(P) = P \cap A_0$.

Proof. (1) If $P \in \operatorname{Supp}_A(M)$, then $M_P \neq 0$ and in particular $M_{\mathfrak{p}} \neq 0$, where $\mathfrak{p} = P \cap A_0$. This shows that φ is well defined. Let $\mathfrak{p} \in \operatorname{Supp}_{A_0}(M)$. Then

$$M_{\mathfrak{p}} = \bigoplus_{i \in \mathbb{Z}} (M_i)_{\mathfrak{p}} \neq 0,$$

and we may consider $M_{\mathfrak{p}}$ as a graded module over the graded ring $A_{\mathfrak{p}}$. Note that $A_{\mathfrak{p}}$ is a *local ring with unique graded maximal ideal $\mathfrak{m} = \mathfrak{p}(A_0)_{\mathfrak{p}} \oplus (A_+)_{\mathfrak{p}}$. Since all minimal primes of $\operatorname{Supp}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ are graded, $\mathfrak{m} \in \operatorname{Supp}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$. Thus there is a prime $P \in \operatorname{Supp}_A(M)$ with $P \cap A_0 = \mathfrak{p}$.

(2) If $P \in \operatorname{Ass}_A(M)$, then there exists $y \in M$ so that $\operatorname{ann}_A(y) = P$. Thus $\operatorname{ann}_{A_0}(y) = P \cap A_0 = \mathfrak{p}$ and $\mathfrak{p} \in \operatorname{Ass}_{A_0}(M)$. Conversely, let $\mathfrak{p} \in \operatorname{Ass}_{A_0}(M)$. Consider again the graded $A_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$. There exists $z \in M_{\mathfrak{p}}$ so that $\operatorname{ann}_{(A_0)_{\mathfrak{p}}}(z) = \mathfrak{p}(A_0)_{\mathfrak{p}}$, and therefore

$$\mathfrak{p}(A_0)_{\mathfrak{p}} \subseteq \bigcup_{Q \in \mathrm{Ass}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})} Q.$$

Since $M_{\mathfrak{p}}$ is a finitely generated $A_{\mathfrak{p}}$ -module, there exists $Q \in \mathrm{Ass}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ with $\mathfrak{p}(A_0)_{\mathfrak{p}} \subseteq Q$. Since $A_{\mathfrak{p}}$ is *local with unique graded maximal ideal $\mathfrak{p}(A_0)_{\mathfrak{p}} \oplus (A_+)_{\mathfrak{p}}$, we obtain $Q \cap (A_0)_{\mathfrak{p}} = \mathfrak{p}(A_0)_{\mathfrak{p}}$, and a preimage $P \in \mathrm{Spec}(A)$ of Q is an associated prime of the A-module M, with $P \cap A_0 = \mathfrak{p}$.

Lemma 1.1.2 shows in particular that M as an A_0 -module has a finite set of associated primes.

- 1.1.3. **Lemma.** Let A and M be as above and set $I = \operatorname{ann}_{A_0}(M)$. For any $\mathfrak{p} \in \operatorname{Spec}(A_0)$ the following hold:
 - (1) If $M_{\mathfrak{p}} = 0$, then there is an element $a \in A_0 \setminus \mathfrak{p}$ with $M_a = 0$.
 - (2) $\operatorname{ann}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) = I(A_0)_{\mathfrak{p}}.$

Proof. (1) This is a basic fact about Noetherian modules using that M is a finitely generated module over A and $A_0 \setminus \mathfrak{p}$ is a multiplicative subset of A.

(2) Obviously, $I(A_0)_{\mathfrak{p}} \subseteq \operatorname{ann}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}})$. Let $x \in \operatorname{ann}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}})$ with $x = \frac{b}{s}$, where $b \in A_0$ and $s \in A_0 \setminus \mathfrak{p}$. Assume that m_1, \ldots, m_r is a system of generators of the A-module M. Since $x \frac{m_i}{1} = 0$ for all $1 \le i \le r$ there is an element $t \in A_0 \setminus \mathfrak{p}$ with $tbm_i = 0$ for all $1 \le i \le r$. We have that $tb \in I$ and hence $x = \frac{b}{s} \in I(A_0)_{\mathfrak{p}}$.

1.2. The Auslander-Buchsbaum formula. Let $A = \bigoplus_{i>0} A_i$ be a graded Noetherian homogeneous ring with (A_0, \mathfrak{m}_0) local and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated A-module. Since M is (in general) not finitely generated as an A_0 module, we need to verify that the classical definition of A_0 -depth works in the case of a finitely generated graded module. First note that an element $z \in \mathfrak{m}_0$ is regular on M if and only if z is regular on M_i for all $i \in \mathbb{Z}$ with $M_i \neq 0$. Let $x_1, \ldots, x_s \in \mathfrak{m}_0$ and $y_1, \ldots, y_t \in \mathfrak{m}_0$ be two maximal regular M-sequences (as an A_0 -module). Then for all $i \in \mathbb{Z}$ with $M_i \neq 0$ the two sequences are regular on the A_0 -module M_i , and the sets

$$\operatorname{Ass}_{A_0}(M/(x_1,\ldots,x_s)M) = \bigcup_{i \in \mathbb{Z}} \operatorname{Ass}_{A_0}(M_i/(x_1,\ldots,x_s)M_i),$$
$$\operatorname{Ass}_{A_0}(M/(y_1,\ldots,y_t)M) = \bigcup_{i \in \mathbb{Z}} \operatorname{Ass}_{A_0}(M_i/(y_1,\ldots,y_t)M_i)$$

are finite by Lemma 1.1.2. The maximality of the first sequences yields that there is an $i \in \mathbb{Z}$ with $M_i \neq 0$ and $\mathfrak{m}_0 \in \mathrm{Ass}_{A_0}(M_i/(x_1,\ldots,x_s)M_i)$. Since the second sequence is also regular on M_i we have that $t \leq s$. A similar argument shows that s < t, and we obtain that two maximal regular sequences on M have the same length. Therefore the classical definition of depth is efficient and we put:

1.2.1. **Definition.** Let A and M be as above with (A_0, \mathfrak{m}_0) local. We define the depth of M as an A_0 -module to be the number

$$\operatorname{depth}_{A_0}(M) := \sup\{n \in \mathbb{N} \mid \exists \text{ an } M\text{-sequence of length } n\}.$$

In general, for a (not necessarily finitely generated) module M over a Noetherian local ring A, the depth of M is defined by means of Koszul homology (see [2, Definition 9.1.1). In our setting, the definition above coincides with the one in [2].

The aim of this section is to prove the Auslander-Buchsbaum theorem for finitely generated graded modules M over *local graded Noetherian rings A when M is considered a module over the base ring A_0 . There is a generalized version of the Auslander-Buchsbaum theorem which applies to our case (see [3, (12.2)] or [6, Theorem (2.1). For the convenience of the reader we include a proof of this theorem in the graded case, which only makes use of the classical definition of depth as given above.

- 1.2.2. **Lemma.** Let A and M be as above and assume that (A_0, \mathfrak{m}_0) is local. Then:
 - (1) $\dim_{A_0}(M) = \sup\{\dim_{A_0}(M_i) \mid i \in \mathbb{Z}\},\$
 - $\begin{array}{ll} \text{(2)} \ \operatorname{depth}_{A_0}(M) = \inf\{\operatorname{depth}_{A_0}(M_i) \mid i \in \mathbb{Z} \text{ with } M_i \neq 0\}, \\ \text{(3)} \ \operatorname{projdim}_{A_0}(M) = \sup\{\operatorname{projdim}_{A_0}(M_i) \mid i \in \mathbb{Z}\}. \end{array}$

Proof. (1) By Lemma 1.1.1 there is an integer $s \in \mathbb{Z}$ so that $\operatorname{ann}_{A_0}(M_k) = \operatorname{ann}_{A_0}(M_s)$ for all $k \geq s$. In particular, for all $k \geq s$, $\dim_{A_0}(M_k) = \dim_{A_0}(M_s)$ and

$$\dim_{A_0}(M) = \dim_{A_0}(M_r \oplus M_{r-1} \oplus \ldots \oplus M_{s-1} \oplus M_s),$$

where $r \in \mathbb{Z}$ is the smallest integer j with $M_j \neq 0$. The dimension of a finite direct sum of A_0 -modules is the maximum of the dimensions of its summands.

(2) If $r_1, \ldots, r_s \in A_0$ is a regular sequence on M, then r_1, \ldots, r_s is a regular sequence on M_i for all $i \in \mathbb{Z}$ with $M_i \neq 0$. Thus $\operatorname{depth}_{A_0}(M) \leq \operatorname{depth}_{A_0}(M_i)$ for all $i \in \mathbb{Z}$ with $M_i \neq 0$, and hence

$$\operatorname{depth}_{A_0}(M) \leq \inf \{ \operatorname{depth}_{A_0}(M_i) \mid i \in \mathbb{Z} \text{ with } M_i \neq 0 \}.$$

In order to show the other inequality we proceed by induction on $t = \operatorname{depth}_{A_0}(M)$. Note that by Lemma 1.1.3, $\operatorname{Ass}_{A_0}(M)$ is a finite set.

If t = 0, then $\mathfrak{m}_0 \in \mathrm{Ass}_{A_0}(M)$ and there is an $i \in \mathbb{Z}$ so that $\mathfrak{m}_0 \in \mathrm{Ass}_{A_0}(M_i)$. Thus

$$\inf\{\operatorname{depth}_{A_0}(M_i) \mid i \in \mathbb{Z} \text{ with } M_i \neq 0\} = 0.$$

Now assume that $t = \operatorname{depth}_{A_0}(M) > 0$. This implies that

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}_{A_0}(M)}\mathfrak{p}\neq\mathfrak{m}_0.$$

Consider an element

$$r \in \mathfrak{m}_0 \setminus \bigcup_{\mathfrak{p} \in \mathrm{Ass}_{A_0}(M)} \mathfrak{p}.$$

Since r is regular on M, and therefore is regular on M_i for all $i \in \mathbb{Z}$ with $M_i \neq 0$, we obtain

$$\operatorname{depth}_{A_0}(M/rM) = \operatorname{depth}_{A_0}(M) - 1,$$

and for all $i \in \mathbb{Z}$ with $M_i \neq 0$,

$$\operatorname{depth}_{A_0}(M_i/rM_i) = \operatorname{depth}_{A_0}(M_i) - 1$$
.

By the induction hypothesis

$$\operatorname{depth}_{A_0}(M/rM) = \inf \{ \operatorname{depth}_{A_0}(M_i/rM_i) \mid i \in \mathbb{Z} \text{ and } M_i/rM_i \neq 0 \}.$$

The assertion follows.

(3) For all $i \in \mathbb{Z}$ let $F_{\bullet}^{(i)}$ be a finite free resolution of M_i . Then

$$F_{\bullet} = \bigoplus_{i \in \mathbb{Z}} F_{\bullet}^{(i)}$$

is a free resolution of the A_0 -module M yielding

$$\operatorname{projdim}_{A_0}(M) \leq \sup \{\operatorname{projdim}_{A_0}(M_i) \mid i \in \mathbb{Z}\}.$$

In order to show the other inequality, assume that $\operatorname{projdim}_{A_0}(M) = r$ and consider for all $i \in \mathbb{Z}$ the rth syzygy $T_r^{(i)}$ of M_i and the exact sequence

$$0 \longrightarrow T_r^{(i)} \longrightarrow F_{r-1}^{(i)} \longrightarrow \ldots \longrightarrow F_0^{(i)} \longrightarrow M_i \longrightarrow 0.$$

By taking direct sums we see that

$$\bigoplus_{i\in\mathbb{Z}}T_r^{(i)}$$

is an rth syzygy of M and thus projective. Therefore every $T_r^{(i)}$ is a projective finitely generated A_0 -module. Since A_0 is a local Noetherian ring, every $T_r^{(i)}$ is a free A_0 -module and thus for all $i \in \mathbb{Z}$

$$\operatorname{projdim}_{A_0}(M_i) \leq r$$
.

This shows (3).

1.2.3. **Proposition.** Let A and M be as above with (A_0, \mathfrak{m}_0) a local ring. Then the Auslander-Buchsbaum formula holds for M as an A_0 -module. That is, if $\operatorname{projdim}_{A_0}(M)$ is finite, then

$$\operatorname{depth}_{A_0}(M) + \operatorname{projdim}_{A_0}(M) = \operatorname{depth}(A_0).$$

Proof. Let $\operatorname{projdim}_{A_0}(M) = r < \infty$. Then by Lemma 1.2.2(2) there is an $i \in \mathbb{Z}$ with $\operatorname{projdim}_{A_0}(M) = \operatorname{projdim}_{A_0}(M_i)$, and for all $j \in \mathbb{Z}$

$$\operatorname{projdim}_{A_0}(M_j) \leq r$$
.

The Auslander-Buchsbaum formula holds for finitely generated A_0 -modules

$$\operatorname{depth}_{A_0}(M_j) + \operatorname{projdim}_{A_0}(M_j) = \operatorname{depth}_{A_0}(A_0)$$
 for all $j \in \mathbb{Z}$,

and therefore

$$\operatorname{depth}_{A_0}(M_j) \ge \operatorname{depth}_{A_0}(M_i)$$
 for all $j \in \mathbb{Z}$.

Using Lemma 1.2.2(1), we conclude $\operatorname{depth}_{A_0}(M) = \operatorname{depth}_{A_0}(M_i)$. The Auslander-Buchsbaum formula for M_i then gives the desired formula.

2. Openness of the codepth locus

Throughout this section we assume that $A=\bigoplus_{i\in\mathbb{N}_0}A_i$ is a graded Noetherian homogeneous ring and that $M=\bigoplus_{i\in\mathbb{Z}}M_i$ is a finitely generated A-module. Our aim is to generalize and/or modify existing theorems for finitely generated modules over Noetherian rings to the graded case where the module M is considered a module over the base ring A_0 . We begin with a result on the flat locus of the A_0 -module M.

2.1. The flat locus of M. Our first result is a modification of [8, Theorem 24.3]. The proof follows the proof in Matsumura's book. A key observation is that for a finitely generated graded module M the localizations $M_{\mathfrak{p}}$ are I-adically separated for every ideal $I \subseteq (A_0)_{\mathfrak{p}}$.

Proposition. Let A and M be as above. The flat locus of M as an A_0 -module

$$U^0(M) = {\mathfrak{p} \in \operatorname{Spec}(A_0) \mid M_{\mathfrak{p}} \text{ is flat over } A_0}$$

is open in $\operatorname{Spec}(A_0)$.

Proof. According to Nagata's criterion on the openness of loci [8, Theorem 24.2] we have to show:

- (a) If $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(A_0)$ with $\mathfrak{p} \in U^0(M)$ and $\mathfrak{q} \subseteq \mathfrak{p}$, then $\mathfrak{q} \in U^0(M)$.
- (b) If $\mathfrak{p} \in U^0(M)$, then $U^0(M)$ contains a nonempty open subset of $V^0(\mathfrak{p}) = \{\mathfrak{n} \in \operatorname{Spec}(A_0) \mid \mathfrak{p} \subseteq \mathfrak{n}\}.$
- (a) is trivial. Let $\mathfrak{p} \in U^0(M)$, that is, assume that $M_{\mathfrak{p}}$ is flat over A_0 . Set $\bar{A}_0 = A_0/\mathfrak{p}$. By [8, Theorem 22.3] for every $\mathfrak{q} \in V^0(\mathfrak{p})$ the module $M_{\mathfrak{q}}$ is flat over A_0 if and only if $(M/\mathfrak{p}M)_{\mathfrak{q}}$ is flat over \bar{A}_0 and $\operatorname{Tor}_1^{A_0}(M_{\mathfrak{q}},\bar{A}_0)=0$. A similar argument as in the proof of [8, Theorem 23.2] shows that $\operatorname{Tor}_1^{A_0}(M,\bar{A}_0)$ is a finitely generated module over A. Therefore there is an element $a \in A_0 \smallsetminus \mathfrak{p}$ so that $(\operatorname{Tor}_1^{A_0}(M,\bar{A}_0))_a = 0$. By applying [8, Theorem 24.1] to the \bar{A}_0 -module $M/\mathfrak{p}M$ we obtain an element $b \in A_0 \smallsetminus \mathfrak{p}$ so that $(M/\mathfrak{p}M)_b$ is a free $(\bar{A}_0)_b$ -module. Set $D_{ab}^0 = \{\mathfrak{q} \in \operatorname{Spec}(A_0) \mid ab \notin \mathfrak{q}\}$. Then for all $\mathfrak{q} \in V^0(\mathfrak{p}) \cap D_{ab}^0$ we have that $\operatorname{Tor}_1^{A_0}(M_{\mathfrak{q}},\bar{A}_0) = 0$ and that $(M/\mathfrak{p}M)_{\mathfrak{q}}$ is flat over $(\bar{A}_0)_{\mathfrak{q}}$. Thus by [8, Theorem 22.3] the module $M_{\mathfrak{q}}$ is flat over $(A_0)_{\mathfrak{q}}$ and $M_{\mathfrak{q}}$ is flat over A_0 .

2.2. A proposition by Auslander. As before, let A be a Noetherian graded homogeneous ring and let M be a finitely generated A-module. The following Proposition is an extension of a proposition in EGA [4, (6.11.1) and (6.11.2)] to the (not finitely generated) A_0 -module M.

Proposition. The function $\gamma : \operatorname{Spec}(A_0) \longrightarrow \mathbb{N}$ defined by

$$\gamma(\mathfrak{p}) = \operatorname{projdim}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \quad \text{for all} \quad \mathfrak{p} \in \operatorname{Spec}(A_0)$$

is upper semicontinuous. That is, for all $n \in \mathbb{N}$ the set

$$U_n^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid \operatorname{projdim}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n \}$$

is open in $Spec(A_0)$.

Proof. Note that the ring A is the homomorphic image of the polynomial ring $B = A_0[x_1, \ldots, x_t]$, and that, with the standard grading on the polynomial ring B, the graded B-module M is finitely generated. We may replace A by B and assume that A is a graded polynomial ring over A_0 . Let $\mathfrak{p} \in \operatorname{Spec}(A_0)$ with $\operatorname{projdim}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n$.

Consider a graded finitely generated free resolution of the A-module M:

$$F_n \xrightarrow{\varphi_n} F_{n-1} \xrightarrow{\varphi_{n-1}} \cdots \xrightarrow{\varphi_1} F_1 \xrightarrow{\varphi_0} M \to 0,$$

where the F_i are finitely generated graded free A-modules and the φ_i are homogeneous A-linear maps. Let T be the nth syzygy of M, yielding an exact sequence of graded A-modules:

$$(*) 0 \to T \xrightarrow{\delta} F_{n-1} \xrightarrow{\varphi_{n-1}} \dots \xrightarrow{\varphi_1} F_1 \xrightarrow{\varphi_0} M \to 0.$$

Since all the homogeneous parts of F_i are free A_0 -modules and since T is a graded A-module, we obtain for all $k \in \mathbb{Z}$ an exact sequence of A_0 -modules

$$0 \to T_k \xrightarrow{(\delta)_k} (F_{n-1})_k \xrightarrow{(\varphi_{n-1})_k} \dots \xrightarrow{(\varphi_1)_k} (F_1)_k \xrightarrow{(\varphi_0)_k} M_k \to 0$$

with $(F_i)_k$ a finitely generated free A_0 -module. Therefore by considering (*) as an exact sequence of A_0 -modules we obtain that every module F_i is free over A_0 and T is an nth syzygy of the A_0 -module M. Localization at \mathfrak{p} yields exact sequences:

$$0 \to T_{\mathfrak{p}} \xrightarrow{\delta_{\mathfrak{p}}} (F_{n-1})_{\mathfrak{p}} \xrightarrow{(\varphi_{n-1})_{\mathfrak{p}}} \dots \xrightarrow{(\varphi_{1})_{\mathfrak{p}}} (F_{1})_{\mathfrak{p}} \xrightarrow{(\varphi_{0})_{\mathfrak{p}}} M_{\mathfrak{p}} \to 0.$$

Since $\operatorname{projdim}_{(A_0)p}(M_{\mathfrak{p}}) \leq n$, it follows that $T_{\mathfrak{p}}$ is a projective $(A_0)_{\mathfrak{p}}$ -module. Therefore $T_{\mathfrak{p}}$ is a free $(A_0)_{\mathfrak{p}}$ -module. Since T is a finitely generated graded A-module, it follows from Proposition 2.1 that the set

$$U^0(T) = \{ \mathfrak{q} \in \operatorname{Spec}(A_0) \mid T_{\mathfrak{q}} \text{ is a flat over } (A_0)_{\mathfrak{q}} \}$$

is an open subset of $\operatorname{Spec}(A_0)$. Since T is a finitely generated graded A-module,

$$T = \bigoplus_{i \in \mathbb{Z}} T_i,$$

we have for $\mathfrak{q} \in \operatorname{Spec}(A_0)$

$$T_{\mathfrak{q}} = \bigoplus_{i \in \mathbb{Z}} (T_i)_{\mathfrak{q}} .$$

If $T_{\mathfrak{q}}$ is flat over $(A_0)_{\mathfrak{q}}$, then, by [1, chapter 1, §2.3, Proposition 2], for all $i \in \mathbb{Z}$, $(T_i)_{\mathfrak{q}}$ is flat over $(A_0)_{\mathfrak{q}}$. Since every $(T_i)_{\mathfrak{q}}$ is a finitely generated $(A_0)_{\mathfrak{q}}$ -module, each $(T_i)_{\mathfrak{q}}$ is a free $(A_0)_{\mathfrak{q}}$ -module and

$$U^0(T) = \{ \mathfrak{q} \in \operatorname{Spec}(A_0) \mid T_{\mathfrak{q}} \text{ is a free over } (A_0)_{\mathfrak{q}} \}.$$

This shows that $\mathfrak{p} \in U^0(T)$ and

$$U^0(T) \subseteq \{ \mathfrak{q} \in \operatorname{Spec}(A_0) \mid \operatorname{projdim}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \leq n \}.$$

The set $\{\mathfrak{q} \in \operatorname{Spec}(A_0) \mid \operatorname{projdim}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \leq n\}$ is thus open in $\operatorname{Spec}(A_0)$.

2.3. A dimension formula.

Proposition. Let A and M be as above. Assume that A_0 is catenary and let \mathfrak{p} be a prime ideal in A_0 with $\mathfrak{p} \in \operatorname{Supp}_{A_0}(M)$. Then there is an open subset U in $\operatorname{Spec}(A_0)$ such that $\mathfrak{p} \in U$, and for all $\mathfrak{q} \in U \cap V^0(\mathfrak{p})$ we have

$$\dim(M_{\mathfrak{q}}) = \dim(M_{\mathfrak{p}}) + \dim((A_0/\mathfrak{p})_{\mathfrak{q}}).$$

Proof. Set $S = A_0 / \operatorname{ann}_{A_0}(M)$ and choose an element $a \in S \setminus \mathfrak{p}$ so that the following equality on the set of minimal primes holds:

$$Min(S_{\mathfrak{p}}) = Min(S_a)$$
.

Assume that $\dim(M_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}S) = t$ and choose elements $y_1, y_2, \dots, y_t \in S$ so that

 y_1 not in a minimal prime of $S_{\mathfrak{p}}$,

 y_2 not in a minimal prime of $y_1S_{\mathfrak{p}}$,

. . .

 y_t not in a minimal prime of $(y_1, \ldots, y_{t-1})S_{\mathfrak{p}}$.

Then there is an element $b \in S \setminus \mathfrak{p}$ so that

 y_1 not in a minimal prime of S_b ,

 y_2 not in a minimal prime of y_1S_b ,

. . .

$$y_t$$
 not in a minimal prime of $(y_1, \ldots, y_{t-1})S_b$.

Let a, b also denote preimages of a and b in A_0 and put $U = D_{ab} = \{ \mathfrak{q} \in \operatorname{Spec}(A_0) \mid ab \notin \mathfrak{q} \}$. Then for every $\mathfrak{q} \in U \cap V^0(\mathfrak{p})$ the elements y_1, \ldots, y_t extend to a system of parameters of $S_{\mathfrak{q}}$. Since $S_{\mathfrak{p}}$ and $S_{\mathfrak{q}}$ have the same set of minimal primes and since $S_{\mathfrak{q}}$ is catenary, we obtain that

$$\dim(S_{\mathfrak{g}}) = \dim(S_{\mathfrak{p}}) + \dim((S/\mathfrak{p})_{\mathfrak{g}}).$$

This is the same as

$$\dim(M_{\mathfrak{g}}) = \dim(M_{\mathfrak{p}}) + \dim((A_0/\mathfrak{p})_{\mathfrak{g}}). \qquad \Box$$

2.4. The special case of A_0 regular. Let (R, \mathfrak{m}) be a local Noetherian ring and M an R-module. Then we define

$$\operatorname{codepth}_{R}(M) := \dim_{R}(M) - \operatorname{depth}_{R}(M)$$
.

As usual the depth of the zero module is defined to be ∞ , and the dimension of the zero module is $-\infty$, implying that the codepth of the zero module is $-\infty$.

The following proposition extends a result by Auslander [4, (6.11.2)] to the graded case.

Proposition. Let A and M be as above and assume that A_0 is a homomorphic image of a regular ring. The function $\varphi \colon \operatorname{Spec}(A_0) \longrightarrow \mathbb{N}$ defined by

$$\varphi(\mathfrak{p}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \quad \text{for all} \quad \mathfrak{p} \in \operatorname{Spec}(A_0)$$

is upper semicontinuous, that is, for all $n \in \mathbb{N}$, the set

$$U_{C_n}^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n \}$$

is open in $\operatorname{Spec}(A_0)$.

Proof. If A_0 is a homomorphic image of a regular ring R_0 , then the dimension and the depth of the R_0 -module M are identical to the dimension and depth of M considered as an R_0 -module. If we show that the set

$$\widetilde{U}_{C_n}^0(M) = \{ \mathfrak{q} \in \operatorname{Spec}(R_0) \mid \operatorname{codepth}_{(R_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \leq n \}$$

is open in $\operatorname{Spec}(R_0)$ (where M is considered an R_0 -module), then the corresponding set for the A_0 -module M is given by

$$U_{C_n}^0(M) = \widetilde{U}_{C_n}^0(M) \cap V(J),$$

where $A_0 = R_0/J$. Thus we may assume that A_0 is a regular ring. We may also assume that A is a polynomial ring over A_0 equipped with the standard grading.

Let $\mathfrak{p} \in \operatorname{Spec}(A_0)$. By Proposition 1.2.3, the Auslander-Buchsbaum formula holds:

$$\operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \operatorname{depth}((A_0)_{\mathfrak{p}}) - \operatorname{projdim}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

Let $I = \operatorname{ann}_{A_0}(M)$. By Lemma 1.1.3, $I_{\mathfrak{p}} = \operatorname{ann}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}})$, and we have that

$$\dim_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \dim((A_0)_{\mathfrak{p}}) - \operatorname{ht}(I(A_0)_{\mathfrak{p}}).$$

Suppose that $\mathfrak{p} \in \operatorname{Spec}(A_0)$ is such that

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n$$
.

If $M_{\mathfrak{p}}=0$, then $\mathfrak{p}\not\supseteq I$. Take an element $a\in I\cap (A_0\smallsetminus \mathfrak{p})$. Then for all

$$\mathfrak{q} \in D_a = {\mathfrak{w} \in \operatorname{Spec}(A_0) \mid a \notin \mathfrak{w}}$$

we have that $M_{\mathfrak{q}} = 0$ and $\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = -\infty \leq n$.

If $M_{\mathfrak{p}} \neq 0$ pick an element $a_1 \in A_0 \setminus \mathfrak{p}$ so that $(A_0)_{\mathfrak{p}}$ and $(A_0)_{a_1}$ have the same minimal primes and put $U_1 = D_{a_1} = \{\mathfrak{w} \in \operatorname{Spec}(A_0) \mid a_1 \notin \mathfrak{w}\}$. Then for all $\mathfrak{q} \in U_1 \cap V^0(I)$,

$$\operatorname{ht}(I(A_0)_{\mathfrak{q}}) \ge \operatorname{ht}(I(A_0)_{\mathfrak{p}}).$$

Let $\operatorname{projdim}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}})=t$. Then by Proposition 2.2 there is an open subset U_2 in $\operatorname{Spec}(A_0)$ so that

$$\operatorname{projdim}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \leq t \quad \text{for all} \quad \mathfrak{q} \in U_2.$$

Using the Auslander-Buchsbaum formula and the fact that A_0 is regular, we obtain for all $\mathfrak{q} \in U_2 \cap U_1 \cap V^0(I)$:

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \dim_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) - \operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}})$$

$$= \dim((A_0)_{\mathfrak{q}}) - \operatorname{ht}(I(A_0)_{\mathfrak{q}}) - \dim((A_0)_{\mathfrak{q}}) + \operatorname{projdim}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}})$$

$$= \operatorname{projdim}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) - \operatorname{ht}(I(A_0)_{\mathfrak{q}}).$$

This implies that for all $\mathfrak{q} \in U = U_1 \cap U_2$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \leq \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}),$$

and it follows that $U_{C_n}^0(M)$ is an open subset of $\operatorname{Spec}(A_0)$.

2.5. A local formula. Using the fact that a complete local Noetherian ring is the homomorphic image of a regular local ring, we obtain a result similar to [4, (6.11.5)]:

Lemma. Let A be a Noetherian graded homogeneous ring and let M be a finitely generated graded A-module. Then for all prime ideals $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(A_0)$ with $\mathfrak{p} \subseteq \mathfrak{q}$ we have that

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \geq \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

Proof. By replacing A_0 by $(A_0)_{\mathfrak{q}}$ (and A by $A_{\mathfrak{q}}$) we may assume that (A_0, \mathfrak{m}_0) is a local ring. Then we have to show

$$\operatorname{codepth}_{A_0}(M) \geq \operatorname{codepth}_{(A_0)_n}(M_p)$$
.

Let $\widehat{\mathfrak{p}} \in \operatorname{Spec}(\widehat{A}_0)$ be a minimal prime ideal over $\widehat{\mathfrak{p}}\widehat{A}_0$. Then $\widehat{\mathfrak{p}} \cap A_0 = \mathfrak{p}$ and $(\widehat{A}_0)_{\widehat{\mathfrak{p}}}$ is flat over $(A_0)_{\mathfrak{p}}$ with trivial special fiber. Moreover,

$$\begin{array}{rcl} M_{\mathfrak{p}} \otimes_{(A_{0})_{\mathfrak{p}}} (\widehat{A}_{0})_{\widehat{\mathfrak{p}}} & = & (\bigoplus_{i \in \mathbb{Z}} (M_{i})_{\mathfrak{p}}) \otimes_{(A_{0})_{\mathfrak{p}}} (\widehat{A}_{0})_{\widehat{\mathfrak{p}}} \\ & = & \bigoplus_{i \in \mathbb{Z}} ((M_{i})_{\mathfrak{p}} \otimes_{(A_{0})_{\mathfrak{p}}} (\widehat{A}_{0})_{\widehat{\mathfrak{p}}}) \\ & \cong & \bigoplus_{i \in \mathbb{Z}} (\widehat{M}_{i})_{\widehat{\mathfrak{p}}}, \end{array}$$

where $\widehat{M}_i \cong M_i \otimes_{A_0} \widehat{A}_0$. We have that

$$depth_{A_0}(M) = \inf\{depth_{A_0}(M_i) \mid M_i \neq 0\},\ dim_{A_0}(M) = \sup\{dim_{A_0}(M_i) \mid i \in \mathbb{Z}\}.$$

By [8, Theorem 23.3], for all $i \in \mathbb{Z}$,

$$\begin{aligned} \operatorname{depth}_{(\widehat{A}_0)_{\widehat{\mathfrak{p}}}}((\widehat{M}_i)_{\widehat{\mathfrak{p}}}) &= \operatorname{depth}_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}) + \operatorname{depth}((\widehat{A}_0)_{\widehat{\mathfrak{p}}}/\mathfrak{p}(\widehat{A}_0)_{\widehat{\mathfrak{p}}}) \\ &= \operatorname{depth}_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}), \end{aligned}$$

and by [8, Theorem 15.1],

$$\dim_{(\widehat{A}_0)_{\widehat{\mathfrak{p}}}}((\widehat{M}_i)_{\widehat{\mathfrak{p}}}) = \dim_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}) + \dim((\widehat{A}_0)_{\widehat{\mathfrak{p}}}/\mathfrak{p}(\widehat{A}_0)_{\widehat{\mathfrak{p}}})
= \dim_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}).$$

Let

$$\widetilde{M}:=\bigoplus_{i\in\mathbb{Z}}\widehat{M}_i\cong M\otimes_{A_0}\widehat{A}_0,$$

and note that \widetilde{M} is a finitely generated graded module over the Noetherian homogeneous graded ring

$$\widetilde{A} := A \otimes_{A_0} \widehat{A}_0$$
.

The computation above shows that

$$\operatorname{codepth}_{(\widehat{A}_0)_{\widehat{\mathfrak{p}}}}(\widetilde{M}_{\widehat{\mathfrak{p}}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) =: n.$$

Since \widehat{A}_0 is a homomorphic image of a regular local ring, by Proposition 2.3 the set $U^0_{C_{n-1}}(\widetilde{M})$ is open in $\operatorname{Spec}(\widehat{A}_0)$. This implies that

$$\operatorname{codepth}_{\widehat{A}_0}(\widetilde{M}) \ge \operatorname{codepth}_{(\widehat{A}_0)_{\widehat{\mathfrak{p}}}}(\widetilde{M}_{\widehat{\mathfrak{p}}}).$$

The same argument as above shows that

$$\operatorname{codepth}_{\widehat{A}_0}(\widetilde{M}) = \operatorname{codepth}_{A_0}(M),$$

which proves the claim

$$\operatorname{codepth}_{A_0}(M) \ge \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

- 2.6. Formulas for depth and codepth. In this section we make the same assumption as at the beginning, namely, A is a positively graded Noetherian homogeneous ring and M is a finitely generated graded A-module. The following proposition is the graded version of [4, (6.10.6)]:
- 2.6.1. **Proposition.** Let A and M be as above and assume that A is excellent. Then for every $\mathfrak{p} \in \operatorname{Spec}(A_0)$ there is an open subset $U^0 \subseteq \operatorname{Spec}(A_0)$ with $\mathfrak{p} \in U^0$ so that for all $\mathfrak{q} \in U^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{depth}((A_0)_{\mathfrak{q}}/\mathfrak{p}(A_0)_{\mathfrak{q}}).$$

Proof. Let $\mathfrak{p} \in \operatorname{Spec}(A_0)$. Then by Lemma 2.5 for all $\mathfrak{q} \in V^0(\mathfrak{p})$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \geq \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}),$$

or equivalently,

$$(*) \qquad \dim_{(A_0)_{\mathfrak{g}}}(M_{\mathfrak{g}}) - \operatorname{depth}_{(A_0)_{\mathfrak{g}}}(M_{\mathfrak{g}}) \geq \dim_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) - \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

According to Proposition 2.3 there is an open subset $U_1 \subseteq \operatorname{Spec}(A_0)$ with $\mathfrak{p} \in U_1$ so that for all $\mathfrak{q} \in U_1 \cap V^0(\mathfrak{p})$,

$$\dim_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \dim_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \dim((A_0/\mathfrak{p})_{\mathfrak{q}}).$$

Since A_0 is excellent, there is an open subset $U_2 \subseteq \operatorname{Spec}(A_0)$ so that $\mathfrak{p} \in U_2$, and for all $\mathfrak{q} \in U_2 \cap V^0(\mathfrak{p})$ the local ring

$$(A_0/\mathfrak{p})_{\mathfrak{q}}$$
 is Cohen-Macaulay.

There is also an open subset $U_3 \subseteq \operatorname{Spec}(A_0)$ so that $\mathfrak{p} \in U_3$, and for all $\mathfrak{q} \in U_3 \cap V^0(\mathfrak{p})$ we have equality on the set of minimal primes:

$$\operatorname{Min}_{(A_0)_{\mathfrak{g}}}(I(A_0)_{\mathfrak{g}}) = \operatorname{Min}_{(A_0)_{\mathfrak{p}}}(I(A_0)_{\mathfrak{p}}),$$

where $I := \operatorname{ann}_{A_0}(M)$ denotes the A_0 -annihilator of M. In particular, for all $\mathfrak{q} \in U_3 \cap V^0(\mathfrak{p})$,

$$\operatorname{ht}(I(A_0)_{\mathfrak{g}}) = \operatorname{ht}(I(A_0)_{\mathfrak{p}}).$$

Put $\widetilde{U}_1 = U_1 \cap U_2 \cap U_3$; then for all $\mathfrak{q} \in \widetilde{U}_1 \cap V^0(\mathfrak{p})$,

$$\dim_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \dim((A_0/I)_{\mathfrak{q}}) \quad \text{and} \quad \dim_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \dim((A_0/I)_{\mathfrak{p}}).$$

Since A is excellent, the ring A_0 is universally catenary, and for all $\mathfrak{q} \in \widetilde{U}_1 \cap V^0(\mathfrak{p})$,

$$\dim((A_0/I)_{\mathfrak{q}}) - \dim((A_0/I)_{\mathfrak{p}}) = \dim((A_0/\mathfrak{p})_{\mathfrak{q}}) = \operatorname{depth}((A_0/\mathfrak{p})_{\mathfrak{q}}).$$

From (*) we obtain

$$\operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) - \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \le \operatorname{depth}((A_0/\mathfrak{p})_{\mathfrak{q}})$$

for all $\mathfrak{q} \in \widetilde{U}_1 \cap V^0(\mathfrak{p})$.

In order to prove the other inequality,

$$\operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) - \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \ge \operatorname{depth}((A_0/\mathfrak{p})_{\mathfrak{q}}),$$

assume that $\operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}})=t$ and let $f_1,\ldots,f_t\in\mathfrak{p}$ be such that f_1,\ldots,f_t is a regular sequence on $M_{\mathfrak{p}}$. A prime avoidance argument shows that there is an element $a\in A_0\setminus\mathfrak{p}$ so that f_1,\ldots,f_t is a regular sequence on M_a . (The argument again makes use of the fact that the sets $\operatorname{Ass}_{A_0}(M)$ and $\operatorname{Ass}_{A_0}(M/(f_1,\ldots,f_i)M)$ for all $1\leq i\leq t$ are finite.)

Put

$$\overline{M} := M/(f_1, \ldots, f_t)M,$$

and consider the associated graded module

$$\operatorname{gr}_{\mathfrak{p}}(\overline{M}) = \bigoplus_{i \in \mathbb{N}} \mathfrak{p}^i \overline{M}/\mathfrak{p}^{i+1} \overline{M}.$$

The module \overline{M} is finitely generated over A, and $\operatorname{gr}_{\mathfrak{p}}(\overline{M})$ is a finitely generated $\operatorname{gr}_{\mathfrak{p}}(A)$ -module. Also note that $\operatorname{gr}_{\mathfrak{p}}(A)$ is a finitely generated algebra over $A/\mathfrak{p}A$ and that $A/\mathfrak{p}A$ is a finitely generated algebra over A_0/\mathfrak{p} . Thus $\operatorname{gr}_{\mathfrak{p}}(A)$ is a finitely generated A_0/\mathfrak{p} -algebra. By [8, Theorem 24.1] there is an element $b \in A_0 \setminus \mathfrak{p}$ so that the $(A_0/\mathfrak{p})_b$ -module

$$\operatorname{gr}_{\mathfrak{p}}(\overline{M})_b = \bigoplus_{i \in \mathbb{N}} (\mathfrak{p}^i \overline{M}/\mathfrak{p}^{i+1} \overline{M})_b$$

is free. Set $\widetilde{U}_2 = D_b = \{ \mathfrak{q} \in \operatorname{Spec}(A_0) \mid b \notin \mathfrak{q} \}$ and fix a prime ideal $\mathfrak{q} \in \widetilde{U}_2 \cap V^0(\mathfrak{p})$. Assume that

$$depth((A_0/\mathfrak{p}))_{\mathfrak{q}} = s,$$

and let $g_1, \ldots, g_s \in \mathfrak{q}$ be such that g_1, \ldots, g_s is a regular sequence on $(A_0/\mathfrak{p})_{\mathfrak{q}}$.

Claim 1. g_1 is a regular element on $\overline{M}_{\mathfrak{q}}$.

Claim 2. Set
$$N_1 := \overline{M}_{\mathfrak{q}}/g_1\overline{M}_{\mathfrak{q}}$$
; then $\operatorname{gr}_{\mathfrak{p}}(N_1) \cong \operatorname{gr}_{\mathfrak{p}}(\overline{M}_{\mathfrak{q}})/g_1\operatorname{gr}_{\mathfrak{p}}(\overline{M}_{\mathfrak{q}})$.

Assuming the claims, we finish the proof. From the second claim it follows that $\operatorname{gr}_{\mathfrak{p}}(N_1)$ is a free $(A_0/(g_1,\mathfrak{p})A_0)_{\mathfrak{q}}$ -module. Since g_2 is a regular element on $(A_0/(g_1,\mathfrak{p})A_0)_{\mathfrak{q}}$, we may apply Claims 1 and 2 to N_1 . Note that N_1 is also a finitely generated graded $A_{\mathfrak{q}}$ -module. This yields that g_2 is a regular element on N_1 and that with $N_2 = N_1/g_2N_1$,

$$\operatorname{gr}_{\mathfrak{p}}(N_2) \cong \operatorname{gr}_{\mathfrak{p}}(N_1)/g_2 \operatorname{gr}_{\mathfrak{p}}(N_1).$$

An induction argument yields that g_1, \ldots, g_s is a regular sequence on $\overline{M}_{\mathfrak{q}}$, and we have that

$$\operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) \ge \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{depth}((A_0/\mathfrak{p})_{\mathfrak{q}}.$$

This inequality holds for all $\mathfrak{q} \in \widetilde{U}_2 \cap V^0(\mathfrak{p})$. Assuming the claims the proposition is now proved with $U^0 = \widetilde{U}_1 \cap \widetilde{U}_2$.

In order to prove the claims, set $g = g_1$ and $N = N_1$.

Proof of Claim 1. Let $z \in \overline{M}_{\mathfrak{q}}$ with gz = 0. Consider the image \bar{z} of z in $\overline{M}_{\mathfrak{q}}/\mathfrak{p}\overline{M}_{\mathfrak{q}}$. Since $\overline{M}_{\mathfrak{q}}/\mathfrak{p}\overline{M}_{\mathfrak{q}}$ is a free module over $(A_0/\mathfrak{p})_{\mathfrak{q}}$ and since g is regular on $(A_0/\mathfrak{p})_{\mathfrak{q}}$, we obtain that $\bar{z} = 0$ and $z \in \mathfrak{p}\overline{M}_{\mathfrak{q}}$. Now consider the image of z in $\mathfrak{p}\overline{M}_{\mathfrak{q}}/\mathfrak{p}^2\overline{M}_{\mathfrak{q}}$ and repeat the argument. This yields

$$z \in \bigcap_{j=0}^{\infty} \mathfrak{p}^j \overline{M}_{\mathfrak{q}} .$$

Note that

$$\overline{M}_{\mathfrak{q}} = \bigoplus_{i \in \mathbb{Z}} (\overline{M}_i)_{\mathfrak{q}} \quad \text{with} \quad (\overline{M}_i)_{\mathfrak{q}} = (M_i)_{\mathfrak{q}}/(f_1, \dots, f_t)(M_i)_{\mathfrak{q}}.$$

In particular,

$$\mathfrak{p}^j\overline{M}_{\mathfrak{q}}=\bigoplus_{i\in\mathbb{Z}}\mathfrak{p}^j(\overline{M}_i)_{\mathfrak{q}},$$

and every $(\overline{M}_i)_{\mathfrak{q}}$ is a finitely generated $(A_0)_{\mathfrak{q}}$ -module. This shows that z=0.

Proof of Claim 2. By assumption, we have that $\operatorname{gr}_{\mathfrak{p}}(\overline{M}_{\mathfrak{q}})$ is a free $(A_0/\mathfrak{p})_{\mathfrak{q}}$ - module and $\mathfrak{p}^j \overline{M}_{\mathfrak{q}}/\mathfrak{p}^{j+1} \overline{M}_{\mathfrak{q}}$ is a direct summand of $\operatorname{gr}_{\mathfrak{p}}(\overline{M}_{\mathfrak{q}})$. Thus $\mathfrak{p}^j \overline{M}_{\mathfrak{q}}/\mathfrak{p}^{j+1} \overline{M}_{\mathfrak{q}}$ is a free $(A_0/\mathfrak{p})_{\mathfrak{q}}$ -module and g is regular on $(A_0/\mathfrak{p})_{\mathfrak{q}}$. Therefore

$$\mathfrak{p}^{j}\overline{M}_{\mathfrak{q}}\cap g\overline{M}_{\mathfrak{q}}=g\mathfrak{p}^{j}\overline{M}_{\mathfrak{q}}$$

and thus

$$\begin{array}{ll} \mathfrak{p}^j\overline{M}_{\mathfrak{q}}/g\mathfrak{p}^j\overline{M}_{\mathfrak{q}} & \cong & \mathfrak{p}^j\overline{M}_{\mathfrak{q}}/(\mathfrak{p}^j\overline{M}_{\mathfrak{q}}\cap g\overline{M}_{\mathfrak{q}}) \\ & \cong & \mathfrak{p}^j(\overline{M}_{\mathfrak{q}}/g\overline{M}_{\mathfrak{q}}). \end{array}$$

From the commutative diagram

we obtain that

$$\begin{array}{rcl} \operatorname{gr}_{\mathfrak{p}}(N) & = & \bigoplus_{j \in \mathbb{N}} \mathfrak{p}^{j} N/\mathfrak{p}^{j+1} N \\ & \cong & \bigoplus_{j \in \mathbb{N}} \mathfrak{p}^{j} \overline{M}_{\mathfrak{q}}/(g\mathfrak{p}^{j} \overline{M}_{\mathfrak{q}} + \mathfrak{p}^{j+1} \overline{M}_{\mathfrak{q}}) \\ & \cong & \bigoplus_{j \in \mathbb{N}} (\mathfrak{p}^{j} \overline{M}_{\mathfrak{q}}/\mathfrak{p}^{j+1} \overline{M}_{\mathfrak{q}})/g(\mathfrak{p}^{j} \overline{M}_{\mathfrak{q}}/\mathfrak{p}^{j+1} \overline{M}_{\mathfrak{q}}) \\ & \cong & \operatorname{gr}_{\mathfrak{p}}(\overline{M}_{\mathfrak{q}})/g(\operatorname{gr}(\overline{M}_{\mathfrak{q}}). \end{array}$$

This proves the claim, and finishes the proof.

Similar to [4, (6.11.8.1)] we have in the graded case:

2.6.2. Corollary. Let A and M be as above and assume that A is excellent. Then for every $\mathfrak{p} \in \operatorname{Spec}(A_0)$ there is an open subset $U^0 \subseteq \operatorname{Spec}(A_0)$ with $\mathfrak{p} \in U^0$, so that for all $\mathfrak{q} \in U^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{g}}}(M_{\mathfrak{q}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{codepth}((A_0)_{\mathfrak{q}}/\mathfrak{p}(A_0)_{\mathfrak{q}}).$$

Proof. Let $\mathfrak{p} \in \operatorname{Spec}(A_0)$ and let U_1^0 be as in Proposition 2.6.1, so that $\mathfrak{p} \in U_1^0$, and for all $\mathfrak{q} \in U_1^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{depth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \operatorname{depth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{depth}((A_0)_{\mathfrak{q}}/\mathfrak{p}(A_0)_{\mathfrak{q}}).$$

By Proposition 2.3 there is an open subset U_2^0 in $\operatorname{Spec}(A_0)$, so that $\mathfrak{p} \in U_2^0$, and for all $\mathfrak{q} \in U_2^0 \cap V^0(\mathfrak{p})$,

$$\dim_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \dim_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \dim((A_0/\mathfrak{p})_{\mathfrak{q}}).$$

Thus with $U^0 = U_1^0 \cap U_2^0$ we have that $\mathfrak{p} \in U^0$, and for all $\mathfrak{q} \in U^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{g}}}(M_{\mathfrak{g}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{codepth}((A_0)_{\mathfrak{g}}/\mathfrak{p}(A_0)_{\mathfrak{g}}). \qquad \Box$$

We are now ready to prove the graded version of [4, (6.11.2)(a)].

2.6.3. **Theorem.** Let $A = \bigoplus_{i \in \mathbb{N}} A_i$ be an excellent graded homogeneous ring and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. Then for all $n \in \mathbb{N}$ the

$$U_{C_n}^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n \}$$

is open in $Spec(A_0)$.

Proof. According to Nagata's criterion on openness of loci (see [8, Theorem 24.2]) we need to show:

- (a) If $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(A_0)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{p} \in U^0_{C_n}(M)$, then $\mathfrak{q} \in U^0_{C_n}(M)$.
- (b) If $\mathfrak{p} \in U^0_{C_n}(M)$, then $U^0_{C_n}(M)$ contains a nonempty open subset of $V(\mathfrak{p})$.
- (a) Let $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(A_0)$ with $\mathfrak{q} \subseteq \mathfrak{p}$. By Lemma 2.5

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq \operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}),$$

and thus $\mathfrak{p} \in U^0_{C_n}(M)$ implies that $\mathfrak{q} \in U^0_{C_n}(M)$. (b) Let $\mathfrak{p} \in U^0_{C_n}(M)$. By Corollary 2.6.2 there is an open subset U^0_1 in Spec (A_0) , so that $\mathfrak{p} \in U_1^0$, and for all $\mathfrak{q} \in U_1^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{codepth}((A_0)_{\mathfrak{q}}/\mathfrak{p}(A_0)_{\mathfrak{q}}) \,.$$

Since A and A_0 are excellent, there is an open subset U_2^0 in $\operatorname{Spec}(A_0)$, so that $\mathfrak{p} \in U_2^0$, and for all $\mathfrak{q} \in U_2^0 \cap V^0(\mathfrak{p})$, the ring $(A_0/\mathfrak{p})_{\mathfrak{q}}$ is Cohen-Macaulay. Therefore with $U^0 = U_1^0 \cap U_2^0$ we have that $\mathfrak{p} \in U^0$, and for all $\mathfrak{q} \in U^0 \cap V^0(\mathfrak{p})$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{q}}}(M_{\mathfrak{q}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

This implies that $U^0 \cap V^0(\mathfrak{p}) \subseteq U^0_{C_n}(M)$, and the theorem is proved.

2.6.4. Corollary. Let A and M be as in Theorem 2.6.3. Then the Cohen-Macaulay locus of the A_0 -module M,

$$U^0_{CM}(M) = U^0_{C_0}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid M_{\mathfrak{p}} \text{ is a CM module over } (A_0)_{\mathfrak{p}} \},$$
 is open in $\operatorname{Spec}(A_0)$.

3. Openness of the
$$(S_n)$$
-locus

Throughout this section we assume that $R = A_0$ is the base ring of a graded Noetherian homogeneous ring $A = \bigoplus_{i>0} A_i$ and M is a finitely generated graded Amodule. This includes the case of a finitely generated module M over a Noetherian ring R. For those modules we prove that the openness of the C_n -loci of M implies the openness of the (S_k) -loci of M. The argument is due to Grothendieck [4, (5.7.2) and (6.11.2)(b)], but we include it here for the convenience of the reader. The proof also shows that the (S_k) -loci of M only depend on the C_n -loci of M and on the annihilator of M, so that two R-modules M and N with the same annihilators and C_n -loci have identical (S_k) -loci.

Let M be an R-module and suppose that for all $n \in \mathbb{N}_0$, the set

$$U_{C_n}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \operatorname{codepth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \leq n \}$$

is open in Spec(R). Define

$$Z_n = V(\mathfrak{b}_n) = \operatorname{Spec}(R) \setminus U_C(M),$$

where $\mathfrak{b}_n \subseteq R$ is a reduced ideal. Obviously, for all $n \in \mathbb{N}$,

$$U_{C_n}(M) \subseteq U_{C_{n+1}}(M),$$

and therefore

$$Z_{n+1} \subseteq Z_n$$
 and $\mathfrak{b}_n \subseteq \mathfrak{b}_{n+1}$.

Since R is Noetherian, there is an $m \in \mathbb{N}$ so that for all $t \in \mathbb{N}$,

$$\mathfrak{b}_m = \mathfrak{b}_{m+t}$$
 and $Z_m = Z_{m+t}$.

3.1. **Lemma.** Let $m \in \mathbb{N}$ be as above. Then $Z_m = \emptyset$.

Proof. If $\mathfrak{p} \in \mathbb{Z}_m$, then $\mathfrak{p} \in \mathbb{Z}_{m+t}$ for all $t \in \mathbb{N}$. By definition of \mathbb{Z}_{n+t} ,

$$\operatorname{codepth}_{(R)_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq m + t \quad \text{for all} \quad t \in \mathbb{N}.$$

But codepth_{R_n} $(M_p) \le \dim((R)_p) \le \infty$, and therefore $Z_m = \emptyset$.

Recall that the R-module M satisfies Serre's condition (S_k) if for all $\mathfrak{p} \in \operatorname{Spec}(R)$,

(*)
$$\operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \ge \min(\dim(M_{\mathfrak{p}}), k).$$

From now on let m denote the minimal $m \in \mathbb{N}$ with $Z_m = \emptyset$.

3.2. **Lemma.** With the assumptions as above put $\overline{R} = R/\operatorname{ann}_R(M)$ and let $k \in \mathbb{N}$. Then the R-module M satisfies (S_k) if and only if for all $0 \le n < m$,

$$ht(\mathfrak{b}_n\overline{R}) > n+k$$
.

Proof. Suppose that M satisfies (S_k) , and fix an integer n with $0 \le n < m$. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\mathfrak{b}_n \subseteq \mathfrak{p}$. Then $\mathfrak{p} \in Z_n$, and therefore

$$\operatorname{codepth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > n,$$

or equivalently,

$$\dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) - \operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > n$$
.

Since M satisfies (S_k) , we obtain that whenever

$$\dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) - \operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0,$$

then

$$\operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq k$$
.

Thus, if $\mathfrak{p} \in \mathbb{Z}_n$, then

$$\dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq n + k,$$

which implies that $\operatorname{ht}(\mathfrak{b}_n\overline{R}) \geq n + k$.

Conversely, fix an integer k and assume that for all $0 \le n < m$,

$$\operatorname{ht}(\mathfrak{b}_n\overline{R}) > n + k$$
.

Let $\mathfrak{p} \in \operatorname{Spec}(R)$.

If $M_{\mathfrak{p}} = 0$, then $\operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \infty$, and condition (*) is satisfied.

Now assume $M_{\mathfrak{p}} \neq 0$. If $M_{\mathfrak{p}}$ is a Cohen-Macaulay R-module, then condition (*) is satisfied. Now assume that

$$\operatorname{codepth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > 0,$$

and let $n \in \mathbb{N}_0$ with

$$\operatorname{codepth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = n + 1.$$

Thus $\mathfrak{p} \in \mathbb{Z}_n$ and $\mathfrak{b}_n \subseteq \mathfrak{p}$. By assumption,

$$\operatorname{ht}(\mathfrak{b}_n\overline{R}) > n+k \implies \operatorname{ht}(\mathfrak{b}_n\overline{R}_{\mathfrak{p}}) > n+k \implies \dim(\overline{R}_{\mathfrak{p}}) > n+k$$
.

This implies that

$$\begin{aligned} \operatorname{codepth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) &= n+1 \\ &= \dim(\overline{R}_{\mathfrak{p}}) - \operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \\ &\geq n+1+k - \operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}), \end{aligned}$$

and therefore

$$\operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq k$$
.

Thus $M_{\mathfrak{p}}$ satisfies condition (*), and the *R*-module *M* satisfies Serre's condition (S_k).

For all $0 \le n < m$ consider the closed subset of $\operatorname{Spec}(R)$,

$$Y_{n,k} = \{ \mathfrak{q} \in V(\mathfrak{b}_n) \mid \operatorname{ht}(\mathfrak{b}_n \overline{R}_{\mathfrak{q}}) \le n + k \},$$

and its complement

$$V_{n,k} = \operatorname{Spec}(R) - Y_{n,k}$$

an open subset of Spec(R). By Lemma 3.2

$$U_{S_k}(M) = \bigcap_{0 \le n < m} V_{n,k}$$

is an open subset of Spec(R). We have shown:

3.3. **Theorem.** Let M be an R-module as above. If for all $n \in \mathbb{N}_0$ the C_n -locus $U_{C_n}(M)$ is open in $\operatorname{Spec}(R)$, then for all $k \in \mathbb{N}$, the (S_k) -locus

$$U_{S_k}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \text{ satisfies } (S_k) \}$$

is open in Spec(R).

In the graded case the theorem states:

3.4. Corollary. Let $A = \bigoplus_{i \in \mathbb{N}} A_i$ be an excellent graded homogeneous ring and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. Then for all $k \in \mathbb{N}$, the set

$$U_{S_k}^0(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A_0) \mid \text{ the } (A_0)_{\mathfrak{p}} \text{-module } M_{\mathfrak{p}} \text{ satisfies } (S_k) \}$$

is open in $\operatorname{Spec}(A_0)$.

The proof of the theorem also yields the following corollary:

3.5. Corollary. Suppose that M and N are R-modules as above. Assume that $ann_R(M) = ann_R(N)$ and that for all $n \in \mathbb{N}_0$, the sets $U_{C_n}(M) = U_{C_n}(N)$ are open in $\operatorname{Spec}(R)$. Then for all $k \in \mathbb{N}$,

$$U_{S_k}(M) = U_{S_k}(N),$$

and the (S_k) -loci are open subsets of Spec(R).

4. Stability on the homogeneous parts

Let $A = \bigoplus_{i \in \mathbb{N}} A_i$ be an excellent graded homogeneous Noetherian ring and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. In this section we prove that there is a $k \in \mathbb{N}$, so that for all $n \in \mathbb{N}$ and all $i \geq k$,

$$U_{C_n}^0(M_i) = U_{C_n}^0(M_k)$$
 and $U_{S_n}^0(M_i) = U_{S_n}^0(M_k)$,

that is, the codepth and (S_n) -loci of the homogeneous parts of M are eventually stable (considered as an A_0 -module). As before we define for all $t \in \mathbb{Z}$

$$N_t = \bigoplus_{i>t} M_i,$$

and observe the following simple facts: Let $k_1 \in \mathbb{N}$ be an integer so that for all $t \geq k_1$, $\operatorname{ann}_{A_0}(M_t) = \operatorname{ann}_{A_0}(M_{k_1})$. Then for all $t \geq k_1$,

$$U_{C_n}^0(N_t) \supseteq U_{C_n}^0(N_{k_1})$$
 and $U_{S_n}^0(N_t) \supseteq U_{S_n}^0(N_{k_1})$.

Since A_0 is Noetherian, there is an integer $k_2 \in \mathbb{Z}$, so that $k_2 \geq k_1$ and

$$U_{C_n}^0(N_t) = U_{C_n}^0(N_{k_2})$$
 and $U_{S_n}^0(N_t) = U_{S_n}^0(N_{k_2})$.

We may also assume for large enough k_2 that

$$N_{k_2} = AM_{k_2},$$

which implies that for all $t \geq k_2$,

$$N_t = AM_t$$
.

4.1. **Lemma.** With the assumptions as above assume additionally that (A_0, \mathfrak{m}_0) is a local ring. Then there is a $k_3 \in \mathbb{Z}$, so that for all $t \geq k_3$,

$$\operatorname{depth}_{A_0}(M_t) = \operatorname{depth}_{A_0}(M_{k_3}) = \operatorname{depth}_{A_0}(N_{k_3}).$$

Proof. Let k_1 and k_2 be as above and take an integer k with $k > k_2$. Then codepth_{A₀} $(N_k) = n$ for some $n \in \mathbb{N}$, and therefore

$$\mathfrak{m}_0 \in U_{C_n}^0(N_k)$$
 and $\mathfrak{m}_0 \notin U_{C_{n-1}}^0(N_k)$.

Since $k \geq k_2$, we have for all $t \geq k$

$$\operatorname{codepth}_{A_0}(N_k) = n = \operatorname{codepth}_{A_0}(N_t)$$
.

For all $t \geq k_1$ we also have that $\operatorname{ann}_{A_0}(N_t) = \operatorname{ann}_{A_0}(N_k)$, and therefore for all $t \geq k$,

$$\operatorname{depth}_{A_0}(N_t) = s = \operatorname{depth}_{A_0}(N_k).$$

Let r_1, \ldots, r_s be a maximal regular sequence on N_k and put

$$\overline{N}_k = N_k/(r_1, \dots, r_s)N_k$$
 with homogeneous parts $\overline{M}_i = M_i/(r_1, \dots, r_s)M_i$

for $i \geq k$. Note that the torsion submodule $\Gamma_{A_+}(\overline{N}_k)$ is a finitely generated A-submodule of \overline{N}_k . This implies that there is an integer $k_3 \geq k$ so that $\Gamma_{A_+}(\overline{N}_k) \cap N_{k_3} = 0 = \Gamma_{A_+}(\overline{N}_{k_3})$. Thus for k_3 large enough the A-module \overline{N}_{k_3} is A_+ -torsion-free. Since by assumption $\operatorname{depth}_{A_0}(N_k) = s = \operatorname{depth}_{A_0}(N_{k_3})$, there is an integer $i \geq k_3$ and an element $\bar{x} \in \overline{M}_i$ so that $\bar{x} \neq 0$ and $\mathfrak{m}_0 \bar{x} = 0$. Since \overline{N}_{k_3} is A_+ -torsion-free, we obtain

$$(A_+)^l \bar{x} \neq 0$$
 for all $l \in \mathbb{N}$.

Thus for $k_4 = i > k_3$ we have that $\operatorname{depth}_{A_0}(\overline{M}_{k_4+l}) = 0$ for all $l \in \mathbb{N}_0$, and therefore for all $t \geq k_4$,

$$\operatorname{depth}_{A_0}(M_t) = \operatorname{depth}_{A_0}(M_{k_4}) = s. \qquad \Box$$

Choose an integer $k_0 \in \mathbb{Z}$ so that the following conditions are satisfied:

- (a) $N_{k_0} = AM_{k_0}$, that is, N_{k_0} is generated in the lowest nonvanishing degree.
- (b) For all $t \geq k_0$, $\operatorname{ann}(M_{k_0}) = \operatorname{ann}(M_t)$.
- (c) For all $n \in \mathbb{N}_0$ and all $t \geq k_0$,

$$U_{C_n}^0(N_t) = U_{C_n}^0(N_{k_0})$$
 and $U_{S_n}^0(N_t) = U_{S_n}^0(N_{k_0})$.

As before put

$$Z_n = \operatorname{Spec}(A_0) \setminus U_C^0(N_{k_0}) = V(\mathfrak{b}_n),$$

where $\mathfrak{b}_n \subseteq A_0$ is a reduced ideal. Then $\mathfrak{b}_n \subseteq \mathfrak{b}_{n+1}$, yielding an increasing sequence of ideals

$$\mathfrak{b}_0 \subseteq \mathfrak{b}_1 \subseteq \ldots \subseteq \mathfrak{b}_{m-1} \subseteq \ldots$$

We have seen before that the sequence stops with some $\mathfrak{b}_m = A_0$, and let m be minimal with this property, that is, let $\mathfrak{b}_m = A_0$ and $\mathfrak{b}_{m-1} \neq A_0$. For all $0 \leq j \leq m-1$ we consider the set of minimal prime divisors of \mathfrak{b}_j :

$$\operatorname{Min}(A_0/\mathfrak{b}_j) = \{\mathfrak{p}_{j1}, \dots, \mathfrak{p}_{jr_i}\}.$$

By Lemma 4.1, for all $0 \le j \le m-1$ and all $r_j \ge h \ge 1$, there is an integer $k_{jh} \in \mathbb{N}$ with $k_{jh} \ge k_0$, so that for all $i \ge k_{jh}$,

$$\operatorname{depth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_i)_{\mathfrak{p}_{jh}}) = \operatorname{depth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_{k_{jh}})_{\mathfrak{p}_{jh}}) = \operatorname{constant}.$$

Let $k = \max\{k_{ih} \mid 0 \le j \le m-1; 1 \le h \le r_i\}$. Then for all $i \ge k$,

$$\operatorname{depth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_i)_{\mathfrak{p}_{jh}}) = \operatorname{depth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_k)_{\mathfrak{p}_{jh}}) = \operatorname{depth}_{(A_0)_{\mathfrak{p}_{jh}}}((N_k)_{\mathfrak{p}_{jh}}) \,.$$

By assumption on the annihilators we also have for all $i \geq k$

$$\dim_{(A_0)_{\mathfrak{p}_{jh}}}((M_i)_{\mathfrak{p}_{jh}}) = \dim_{(A_0)_{\mathfrak{p}_{jh}}}((M_k)_{\mathfrak{p}_{jh}}) = \dim_{(A_0)_{\mathfrak{p}_{jh}}}((N_k)_{\mathfrak{p}_{jh}}),$$

which implies that for all $i \geq k$ and all primes \mathfrak{p}_{ih} ,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_i)_{\mathfrak{p}_{jh}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}_{jh}}}((M_k)_{\mathfrak{p}_{jh}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}_{jh}}}((N_k)_{\mathfrak{p}_{jh}}) \,.$$

We are now ready to prove:

4.2. **Theorem.** Let k be as above. Then for all $i \geq k$ and all $\mathfrak{p} \in \operatorname{Spec}(A_0)$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}}}((M_k)_{\mathfrak{p}}).$$

Proof. Let $\mathfrak{p} \in \operatorname{Spec}(A_0)$. If $\mathfrak{b}_0 \not\subseteq \mathfrak{p}$, then $(N_k)_{\mathfrak{p}}$ is a Cohen-Macaulay module over $(A_0)_{\mathfrak{p}}$. It follows that $(M_i)_{\mathfrak{p}}$ is Cohen-Macaulay for all $i \geq k$.

Assume that $\mathfrak{b}_0 \subseteq \mathfrak{p}$ and let g be minimal so that $\mathfrak{b}_g \subseteq \mathfrak{p}$ and $\mathfrak{b}_{g+1} \not\subseteq \mathfrak{p}$. In this case $\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}((N_k)_{\mathfrak{p}}) = g+1$, and there is an integer $1 \leq j \leq r_j$ so that $\mathfrak{p}_{gj} \subseteq \mathfrak{p}$. By [4, (6.11.5)], the nongraded version of Lemma 2.5, for all $i \geq k$,

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}((M_i)_{\mathfrak{p}}) \ge \operatorname{codepth}_{(A_0)_{p_{g_j}}}((M_i)_{p_{g_j}}) = \operatorname{codepth}_{(A_0)_{\mathfrak{p}_{g_j}}}((N_k)_{\mathfrak{p}_{g_j}}) > g.$$

In order to verify the other inequality consider

$$\operatorname{codepth}_{(A_0)_{\mathfrak{p}}}((N_k)_{\mathfrak{p}}) = g + 1 = \dim((N_k)_{\mathfrak{p}}) - \operatorname{depth}_{(A_0)_{\mathfrak{p}}}((N_k)_{\mathfrak{p}}),$$

and assume that $\operatorname{depth}_{(A_0)_{\mathfrak{p}}}((N_k)_{\mathfrak{p}}) = s$. Let x_1, \ldots, x_s be a regular sequence on $(N_k)_{\mathfrak{p}}$. Then x_1, \ldots, x_s is a regular sequence on $(M_i)_{\mathfrak{p}}$ for all $i \geq k$. Since N_k and M_i have the same annihilators, we obtain that

$$\operatorname{codepth}_{(A_0)_n}((N_k)_p) = g + 1 \ge \operatorname{codepth}_{(A_0)_n}((M_i)_p)$$

for all $i \geq k$. This shows that for all $i \geq k$,

$$\operatorname{codepth}_{(A_0)_n}((M_i)_p) = g + 1.$$

4.3. Corollary. There is an integer $k \in \mathbb{N}$ so that for all $i \geq k$ and all $n \in \mathbb{N}$,

$$U_{C_n}^0(M_i) = U_{C_n}^0(M_k) = U_{C_n}^0(N_k).$$

4.4. Corollary. There is an integer $k \in \mathbb{N}$ so that for all $i \geq k$ and all $n \in \mathbb{N}$,

$$U_{S_n}^0(M_i) = U_{S_n}^0(M_k) = U_{S_n}^0(N_k).$$

Proof. The second corollary follows from the first by using Corollary 3.5. \Box

5. Applications

Let A be an excellent ring, let M be a finitely generated A-module, and let $I \subseteq A$ be an ideal of A. By applying the results of the previous section to the Rees algebra/module and to the associated graded ring/module, respectively, we see that there is an integer $k \in \mathbb{N}$, so that for all $i \geq k$ and all $n \in \mathbb{N}$,

$$U_{C_n}(I^iM) = U_{C_n}(I^kM)$$
 and $U_{C_n}(I^iM/I^{i+1}M) = U_{C_n}(I^kM/I^{k+1}M),$
 $U_{S_n}(I^iM) = U_{S_n}(I^kM)$ and $U_{S_n}(I^iM/I^{i+1}M) = U_{S_n}(I^kM/I^{k+1}M).$

In the following we want to apply these results to the (S_n) - and codepth-loci of the modules M/I^kM . We want to show that these loci are again eventually stable, provided that M is a Cohen-Macaulay module over A.

5.1. **Lemma.** Let A be any Noetherian ring, $I \subseteq A$ an ideal, and M a finitely generated A-module. Then for all $k \in \mathbb{N}$,

$$\operatorname{Supp}(M/I^k M) = \operatorname{Supp}(M/IM)$$
.

Proof. It suffices to show that for all $k \in \mathbb{N}$,

$$\operatorname{Supp}(M/I^k M) = \operatorname{Supp}(M/I^{k+1} M).$$

Since M/I^kM is a homomorphic image of $M/I^{k+1}M$, we have $\operatorname{Supp}(M/I^kM) \subseteq \operatorname{Supp}(M/I^{k+1}M)$. Consider the exact sequence:

$$0 \to I^k M/I^{k+1} M \to M/I^{k+1} M \to M/I^k M \to 0$$

and let $\mathfrak{p} \in \operatorname{Spec}(A)$ with $I \subseteq \mathfrak{p}$. The sequence stays exact after localization:

$$0 \to (I^k M/I^{k+1} M)_{\mathfrak{p}} \to (M/I^{k+1} M)_{\mathfrak{p}} \to (M/I^k M)_{\mathfrak{p}} \to 0 \,.$$

If $(M/I^kM)_{\mathfrak{p}} = 0$ with $(M/I^{k+1}M)_{\mathfrak{p}} \neq 0$, then

$$(I^k M/I^{k+1} M)_{\mathfrak{p}} = (M/I^{k+1} M)_{\mathfrak{p}},$$

which implies by Nakayama that $(M/I^{k+1}M)_{\mathfrak{p}}=0$, a contradiction.

A more general version of the next result was proved, using different methods, by Kodiyalam [7, Corollary 9].

5.2. **Theorem.** Suppose that (A, \mathfrak{m}) is a local Noetherian ring, let $I \subseteq A$ be an ideal of A, and let M be a finitely generated A-module. Then there is a $k \in \mathbb{N}$, so that for all $i \geq k$,

$$\operatorname{depth}_{A}(M/I^{i}M) = \operatorname{depth}_{A}(M/I^{k}M)$$
.

Proof. Let \widehat{A} be the \mathfrak{m} -adic completion of A. Then for any finitely generated A-module T,

$$\operatorname{depth}_{A}(T) = \operatorname{depth}_{\widehat{A}}(T \otimes_{A} \widehat{A}),$$

and we may replace A by \widehat{A} and M by $M \otimes_A \widehat{A}$, and assume that A is excellent. By Lemma 4.1 there is a $k_1 \in \mathbb{N}$, so that for all $t \geq k_1$,

$$\operatorname{depth}_{A}(I^{t}M/I^{t+1}M) = \operatorname{depth}_{A}(I^{k_{1}}M/I^{k_{1}+1}M) = g.$$

For all $t > k_1$ consider the exact sequence

$$0 \to I^t M / I^{t+1} M \to M / I^{t+1} M \to M / I^t M \to 0,$$

which leads to an exact sequence on the cohomology modules:

$$\begin{split} \cdots &\to H^i_{\mathfrak{m}}(M/I^{t+1}M) \to H^i_{\mathfrak{m}}(M/I^tM) \to 0 \to \cdots \to 0 \\ \to \cdots &\to H^{g-1}_{\mathfrak{m}}(M/I^{t+1}M) \to H^{g-1}_{\mathfrak{m}}(M/I^tM) \to H^g_{\mathfrak{m}}(I^tM/I^{t+1}M) \\ &\to H^g_{\mathfrak{m}}(M/I^{t+1}M) \to H^g_{\mathfrak{m}}(M/I^tM) \to \cdots, \end{split}$$

where g is minimal with $H_{\mathfrak{m}}^{g}(I^{t}M/I^{t+1}M)\neq 0$.

Case 1: There is an $i \leq g-1$ and a $t_0 \geq k_1$, so that $H^i_{\mathfrak{m}}(M/I^{t_0}M) \neq 0$. Then for all $t \geq t_0$, $H^i_{\mathfrak{m}}(M/I^tM) \neq 0$. Let $h \leq g-1$ be the minimal i with this property. Then

$$\operatorname{depth}_A(M/I^t M) = h \quad \text{for all} \quad t \ge t_0.$$

Case 2: For all $i \leq g - 1$ and all $t \geq k_1$,

$$H_{\mathfrak{m}}^{i}(M/I^{t}M)=0$$
.

This implies that $\operatorname{depth}_A(M/I^tM) \geq g-1$ for all $t \geq k_1$.

Case 2.1: There are infinitely many $t \geq k_1$, so that

$$H_{\mathfrak{m}}^{g-1}(M/I^{t}M) \neq 0$$
.

From the long exact sequence we observe that $H_{\mathfrak{m}}^{g-1}(M/I^tM) \neq 0$ implies that $H_{\mathfrak{m}}^{g-1}(M/I^{t-1}M) \neq 0$ whenever $t-1 \geq k_1$. Thus in this case there is a $t_1 \geq k_1$, so that for all $t \geq t_1$,

$$H_{\mathfrak{m}}^{g-1}(M/I^tM) \neq 0$$
,

and therefore for all $t \geq t_1$, depth_A $(M/I^tM) = g - 1$.

Case 2.2: There is a $t_2 \geq k_1$, so that for all $t \geq t_2$, $H_{\mathfrak{m}}^{g-1}(M/I^tM) = 0$. Then for all $t \geq t_2$,

$$\operatorname{depth}_{\Lambda}(M/I^{t}M) = q.$$

- 5.3. **Theorem.** Let A be an excellent ring and M a finitely generated Cohen-Macaulay A-module. Let $I \subseteq A$ be an ideal of A which is not contained in any minimal prime ideal of M. Then there is an integer $k \in \mathbb{N}$, so that for all $t \geq k$ and all $n \in \mathbb{N}_0$:
 - (1) $U_{C_n}(M/I^tM) = U_{C_n}(M/I^{k_0}M).$
 - (2) $U_{S_n}(M/I^tM) = U_{S_n}(M/I^{k_0}M).$

Proof. (1) Fix $n \in \mathbb{N}$ and let $k \in \mathbb{N}$, so that for all $t \geq k$,

$$U_{C_n}(I^t M) = U_{C_n}(I^k M)$$
.

We claim that for all $i \geq k$ and all $\mathfrak{p} \in V(I)$,

$$\operatorname{depth}_{A_{\mathfrak{p}}}((M/I^{i}M)_{\mathfrak{p}}) = \operatorname{depth}_{A_{\mathfrak{p}}}((M/I^{k}M)_{\mathfrak{p}}).$$

Obviously, for all $i \geq k$, $\dim((I^i M)_{\mathfrak{p}}) = \dim((I^k M)_{\mathfrak{p}})$, and thus because of the stability of the codepth-loci, we have for all $\mathfrak{p} \in V(I)$ and all $i \geq k$ that

$$\operatorname{depth}_{A_{\mathfrak{p}}}((I^{i}M)_{\mathfrak{p}}) = \operatorname{depth}_{A_{\mathfrak{p}}}((I^{k}M)_{\mathfrak{p}}).$$

Fix an integer $i \geq k$ and a prime ideal $\mathfrak{p} \in V(I)$, and consider the exact sequence

$$0 \to (I^i M)_{\mathfrak{p}} \to M_{\mathfrak{p}} \to (M/I^i M)_{\mathfrak{p}} \to 0$$
.

With $d = \dim_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \operatorname{depth}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ we obtain a long exact sequence of the local cohomology modules

$$\cdots \to 0 \to H_{\mathfrak{p}}^{i-1}((M/I^{i}M)_{\mathfrak{p}}) \to H_{\mathfrak{p}}^{i}((I^{i}M)_{\mathfrak{p}}) \to 0 \to \cdots \to 0$$
$$\to H_{\mathfrak{p}}^{d-1}((M/I^{i}M)_{\mathfrak{p}}) \to H_{\mathfrak{p}}^{d}((I^{i}M)_{\mathfrak{p}}) \to H_{\mathfrak{p}}^{d}(M_{\mathfrak{p}}) \to 0 = H_{\mathfrak{p}}^{d}((M/I^{i}M)_{\mathfrak{p}}),$$

where $H_{\mathfrak{p}}^d((M/I^iM)_{\mathfrak{p}})=0$, since $\dim_{A_{\mathfrak{p}}}((M/I^iM)_{\mathfrak{p}})\leq d-1$. This shows that

$$\operatorname{depth}_{A_{\mathfrak{p}}}((M/I^{i}M)_{\mathfrak{p}}) = \operatorname{depth}_{A_{\mathfrak{p}}}((I^{i}M)_{\mathfrak{p}}) - 1 = \operatorname{depth}_{A_{\mathfrak{p}}}((I^{k}M)_{\mathfrak{p}}) - 1,$$

and the claim is proven. For all $i \geq k$ and all $\mathfrak{p} \in V(I)$ we have

$$\begin{split} \operatorname{depth}_{A_{\mathfrak{p}}}((M/I^{i}M)_{\mathfrak{p}}) &= \operatorname{depth}_{A_{\mathfrak{p}}}((M/I^{k}M)_{\mathfrak{p}}), \\ \operatorname{dim}((M/I^{i}M)_{\mathfrak{p}}) &= \operatorname{dim}((M/I^{k}M)_{\mathfrak{p}}) \,. \end{split}$$

The last equation is obtained from Lemma 5.1. This yields that for all $n \in \mathbb{N}$ and for all $i \geq k$,

$$U_{C_n}(M/I^iM) = U_{C_n}(M/I^kM).$$

The second assumption follows with Corollary 3.5.

- 5.4. Corollary. Let A, M, and I be as in the theorem, and assume that $IM \neq M$. Then there is an element $a \in A$, so that for all $k \in \mathbb{N}$,
 - $(1) (M/I^k M)_a \neq 0.$
 - (2) $(M/I^kM)_a$ is a Cohen-Macaulay module.
- 5.5. Corollary. Let A be an excellent ring and M a finitely generated A-module. Suppose that the ideal $I \subseteq A$ satisfies the following conditions:
 - (i) I is not contained in a minimal prime of M.
 - (ii) If $\mathfrak{a} \subseteq A$ is the defining ideal of the non-Cohen-Macaulay locus of M, then $\mathfrak{a} \nsubseteq \sqrt{(IM:M)}$.

Then there is an element $a \in A$, so that for all $k \in \mathbb{N}$,

- (1) $(M/I^k M)_a \neq 0$.
- (2) $(M/I^kM)_a$ is a Cohen-Macaulay module.

Proof. Choose an element $b \in \mathfrak{a} \setminus \sqrt{(IM : M)}$. In order to prove the assertion apply the previous corollary to the Cohen-Macaulay A_b -module M_b .

References

- N. Bourbaki, Commutative algebra, chapters 1-7, Springer Verlag, New York, 1989 MR0979760 (90a:13001)
- [2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, Vol. 39, revised edition, Cambridge, 1998 MR1251956 (95h:13020)
- [3] H. B. Foxby, Hyperhomological algebra and commutative rings, in preparation
- [4] A. Grothendieck, Éléments de géométrie algébrique IV, Inst. Hautes Études Sci. Publ. Math
 24 (1965) MR0199181 (33:7330)
- [5] M. Hochster, J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math. 13 (1974), 115–175 MR0347810 (50:311)
- [6] S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230 (1999), 545–569 MR1680036 (2000a:13027)
- [7] V. Kodiyalam, Homological invariants of powers of an ideal, Proc. Amer. Math. Soc. 118 (1993), 757–764 MR1156471 (93i:13022)
- [8] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge, 1986 MR0879273 (88h:13001)

Department of Mathematics, Michigan State University, East Lansing, Michigan $48824\,$

 $E\text{-}mail\ address{:}\ \mathtt{rotthaus@math.msu.edu}$

Department of Mathematics and Statistics, University of Missouri, Kansas City, Missouri 64110-2499

E-mail address: segal@umkc.edu